Simple algorithm for factorized dynamics of the -automaton

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 3410697
(http://iopscience.iop.org/0305-4470/34/48/331)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.101
The article was downloaded on 02/06/2010 at 09:46

Please note that terms and conditions apply.

Simple algorithm for factorized dynamics of the \mathfrak{g}_{n}-automaton

Goro Hatayama ${ }^{1}$, Atsuo Kuniba ${ }^{1}$ and Taichiro Takagi ${ }^{2}$
${ }^{1}$ Institute of Physics, University of Tokyo, Komaba, Tokyo 153-8902, Japan
${ }^{2}$ Department of Applied Physics, National Defense Academy, Yokosuka 239-8686, Japan

Received 23 March 2001
Published 23 November 2001
Online at stacks.iop.org/JPhysA/34/10697

Abstract

We present an elementary algorithm for the dynamics of recently introduced soliton cellular automata associated with quantum affine algebra $U_{q}\left(\mathfrak{g}_{n}\right)$ at $q=0$. For $\mathfrak{g}_{n}=A_{n}^{(1)}$, the rule reproduces the ball-moving algorithm in Takahashi-Satsuma's box-ball system. For non-exceptional \mathfrak{g}_{n} other than $A_{n}^{(1)}$, it is described as a motion of particles and anti-particles which undergo pair-annihilation and creation through a neutral bound state. The algorithm is formulated without using representation theory or crystal basis theory.

PACS numbers: 02.60.Gf, 02.10.-v, 05.45.Yv, 05.50.+q

1. Introduction

The box-ball system invented by Takahashi and Satsuma [TS, T] is a remarkable example of one-dimensional soliton cellular automata. It represents the dynamics of balls hopping along the array of boxes under a certain rule. The evolution equations have been studied extensively in [TTMS, TTM, TNS] by means of the ultradiscretization of soliton equations.

In [HKT1, FOY, HHIKTT], the box-ball system was identified with a solvable vertex model in statistical mechanics [B] in a low-temperature limit. Mathematically it brought a crystal basis theory $[\mathrm{K}]$ into the game, and led to a generalization labelled with affine Lie algebras \mathfrak{g}_{n}. We call the resulting system the \mathfrak{g}_{n}-automaton. See [HKT1] for the construction for non-exceptional \mathfrak{g}_{n}, and [HKOTY] for the study of soliton scattering. The box-ball system corresponds to the $\mathfrak{g}_{n}=A_{n}^{(1)}$ case [FOY,HHIKTT] (see also [HIK]).

The dynamics of the \mathfrak{g}_{n}-automaton is governed by the combinatorial R [KMN] in crystal theory, which specifies the local interaction of a box and a carrier in the language of the box-ball system. Except for the $A_{n}^{(1)}$ case [NY], the complexity of the combinatorial R [HKOT1,HKOT2] makes it tedious to compute the dynamics of the associated \mathfrak{g}_{n}-automaton. Fortunately the difficulty was overcome in [HKT2] for the automaton having a carrier with infinite capacity, where a factorization of the time evolution into simple Weyl group reflections was proved.

Table 1.

\mathfrak{g}_{n}	B	$\left(j_{d}, \ldots, j_{1}\right)$
$A_{n}^{(1)}$	$\{1,2, \ldots, n+1\}$	$(2,3, \ldots, n+1)$
$A_{2 n-1}^{(2)}$	$\{1,2, \ldots, n,-n, \ldots,-2,-1\}$	$(2,3, \ldots, n,-1,-n, \ldots,-3,-2)$
$A_{2 n}^{(2)}$	$\{1,2, \ldots, n,-n, \ldots,-2,-1, \emptyset\}$	$(2,3, \ldots, n,-1,-n, \ldots,-3,-2, \emptyset)$
$B_{n}^{(1)}$	$\{1,2, \ldots, n, 0,-n, \ldots,-2,-1\}$	$(2,3, \ldots, n, 0,-n, \ldots,-3,-2)$
$C_{n}^{(1)}$	$\{1,2, \ldots, n,-n, \ldots,-2,-1\}$	$(2,3, \ldots, n,-1,-n, \ldots,-3,-2,-1)$
$D_{n}^{(1)}$	$\{1,2, \ldots, n,-n, \ldots,-2,-1\}$	$(2,3, \ldots, n,-n, \ldots,-3,-2)$
$D_{n+1}^{(2)}$	$\{1,2, \ldots, n, 0,-n, \ldots,-2,-1, \emptyset\}$	$(2,3, \ldots, n, 0,-n, \ldots,-3,-2, \emptyset)$

The aim of this paper is to translate the factorized dynamics [HKT2] stated in the crystal language into an analogue of the ball-moving algorithm, and thereby to describe the \mathfrak{g}_{n} automaton in terms of a simple evolution rule. For simplicity we shall restrict ourselves to the case where all the boxes have minimal capacity. In the crystal formulation of the time evolution: $B_{M} \otimes\left(\cdots \otimes B_{m_{i}} \otimes B_{m_{i+1}} \otimes \cdots\right) \simeq\left(\cdots \otimes B_{m_{i}} \otimes B_{m_{i+1}} \otimes \cdots\right) \otimes B_{M}$, the situation corresponds to the choice $\forall m_{i}=1$ and $M=\infty$. The factorized dynamics for the $A_{n}^{(1)}$ automaton reproduces the decomposition of the ball-moving algorithm in the box-ball system into a finer procedure where one only touches the balls with a fixed colour. For the other \mathfrak{g}_{n} in question, the dynamics is decomposed similarly, where each finer procedure (denoted by K_{j} in section 2) is now described as the motion of particles and anti-particles with a fixed colour exhibiting pair-annihilation and creation through a neutral bound state.

In section 2 we specify the set of local states and give the algorithm. In section 3 we present examples. In section 4 we list the patterns that behave as solitons. In section 5 we briefly explain the relation of the algorithm in section 2 and the result in [HKT2]. The key is the formula (5).

Although our notations originate in the crystal theory, the contents in sections 2,3 use no result from it. Despite being just a translation of a more general result in [HKT2], we hope this paper possesses its own role in making the \mathfrak{g}_{n}-automaton more accessible and familiar to the people working on cellular automata and discrete integrable systems.

2. Algorithm

We formulate the \mathfrak{g}_{n}-automaton associated with the non-exceptional affine Lie algebra $\mathfrak{g}_{n}=A_{n}^{(1)}(n \geqslant 1), A_{2 n-1}^{(2)}(n \geqslant 3), A_{2 n}^{(2)}(n \geqslant 2), B_{n}^{(1)}(n \geqslant 3), C_{n}^{(1)}(n \geqslant 2), D_{n}^{(1)}(n \geqslant 4)$ and $D_{n+1}^{(2)}(n \geqslant 2)$. Actually the algorithm itself given below is meaningful formally for $A_{3}^{(2)}, B_{2}^{(1)}, D_{2}^{(1)}$ and $D_{3}^{(1)}$ as well. First we specify the set B of local states and the sequence $j_{1}, \ldots, j_{d} \in B$ as given in table 1 .

Here \emptyset should be understood as a symbol and not an empty set. By the definition $d=n$ for $A_{n}^{(1)}, d=2 n-2$ for $D_{n}^{(1)}, d=2 n-1$ for $A_{2 n-1}^{(2)}, B_{n}^{(1)}, d=2 n$ for $A_{2 n}^{(2)}, C_{n}^{(1)}$ and $D_{n+1}^{(2)}$.

We let

$$
\begin{equation*}
W=\left\{\left(\ldots, b_{i}, b_{i+1}, \ldots\right) \in \cdots \times B \times B \times \cdots \mid b_{i}=1 \text { for }|i| \gg 1\right\} \tag{1}
\end{equation*}
$$

be the set of states of the automaton at a fixed time. Setting

$$
J=\left\{j_{1}, \ldots, j_{d}\right\}
$$

one finds

$$
J= \begin{cases}B \backslash\{1,-1\} & \text { if } \mathfrak{g}_{n}=B_{n}^{(1)}, D_{n}^{(1)}, D_{n+1}^{(2)} \\ B \backslash\{1\} & \text { otherwise } .\end{cases}
$$

For $j \in J$ (hence $j \neq 1$), we define

$$
j^{*}=\left\{\begin{array}{lll}
j & \text { if } & j \in\{0,-1, \emptyset\} \tag{2}\\
-j & \text { if } & j \in J \backslash\{0,-1, \emptyset\}
\end{array}\right.
$$

The time evolution of the \mathfrak{g}_{n}-automaton $T: W \rightarrow W$ takes the factorized form

$$
\begin{equation*}
T=K_{j_{d}} \ldots K_{j_{2}} K_{j_{1}} . \tag{3}
\end{equation*}
$$

To define the operator $K_{j}: W \rightarrow W(j \in J)$, one regards an element $\left(\ldots, b_{i}, b_{i+1}, \ldots\right)$ of W as the one-dimensional array of boxes containing b_{i} in the i th box. (The $(i+1)$ th box to the right of the i th box.) In what follows we regard the box containing $1 \in B$ as an empty box. Thus, taking some $b(\neq 1) \in B$ away from a box means the change of the local states $b \rightarrow 1$. Similarly, putting $b(\neq 1) \in B$ into an empty box means the change $1 \rightarrow b$. Note that the boundary condition in (1) says that only finitely many boxes are non-empty. Under this convention the operator K_{j} is defined by the following algorithm which consists of four steps:

Step 1. Replace each -1 by a pair j, j^{*} within a box.

Step 2. Pick the leftmost j (if any) and move it to the nearest right box which is empty or containing just j^{*}. (Boxes involving the pair j, j^{*} are prohibited as the destination.)

Step 3. Repeat step 2 for those j that are not yet moved until all the j are moved once.

Step 4. Replace the pair j, j^{*} within a box (if any) by -1 .
Remark 1. For $\mathfrak{g}_{n}=A_{n}^{(1)}$ where no -1 is present in B and J, steps 1 and 4 become void and the above procedure shrinks to the well known ball-moving algorithm in the box-ball system [T].

Remark 2. When $j \in\{-1,0, \emptyset\}$, one can have two j within a box due to (2). As for those duplicated j, it does not matter which is left or right, but of course they should be distinguished according to whether they are moved or not yet moved. See K_{\emptyset} in example 3 .

Remark 3. A little inspection shows that K_{-1} actually admits a simpler description which is essentially the ball-moving algorithm in the box-ball system:

Step 1'. Pick the leftmost -1 (if any) and move it to the nearest right empty box.

Step 2^{\prime}. Apply step 1^{\prime} for those -1 that are not yet moved (if any).

Step 3'. Repeat step 2^{\prime} until all the -1 are moved once.
Remark 4. Consider the $\mathfrak{g}_{n} \neq A_{n}^{(1)}$ case and interpret the local states as given in table 2.
Since the set $B \backslash\{1,-1\}$ is invariant under the interchange $j \leftrightarrow j^{*}$, the state j^{*} may be viewed as the anti-particle of j and vice versa. In this sense the bound state -1 is neutral, and especially 0 and \emptyset represent the 'self-neutral' particles that can still form a bound state with another one. Under this interpretation, the above algorithm for K_{j} describes the motion of right-moving particles of colour j seeking an empty box or a free partner, i.e. an anti-particle j^{*} not yet paired with another j, to form a neutral bound state within a box.

Table 2.

B	Entry in the box
1	Empty
$j \neq \pm 1$	Particle of colour j
-1	Bound state of j and j^{*}

The algorithm for K_{j} can also be stated in terms of local rules, which we shall now explain. For $j \in J$ we introduce a map $L_{j}:\left(\mathbb{Z}_{\geqslant 0}\right) \times B \rightarrow B \times\left(\mathbb{Z}_{\geqslant 0}\right)$ as follows. Let the diagram $l \stackrel{t_{j}^{\prime}}{\stackrel{b}{\rightarrow}} l^{\prime}$ denote $L_{j}:(l, b) \mapsto\left(b^{\prime}, l^{\prime}\right)(j$ is attached to the horizontal line).
(1) $j \notin\{1,0,-1, \emptyset\}$ case. Assume $l \in \mathbb{Z}_{\geq c}, b \in B \backslash\{j,-j, 1,-1\}$.

(2) $j \in\{0, \emptyset\}$ case. Assume $l \in \mathbb{Z} \geq c, b \in B \backslash\{j, 1,-1\}$.

(3) $j=-1$ case. Assume $l \in \mathbb{Z}>c, b \in B \backslash\{1, j\}$.

For $\mathfrak{g}_{n}=A_{n}^{(1)}$ we only have the third case with the j understood as $j \in\{2,3, \ldots, n+1\}$, and the resulting presentation of K_{j} first appeared in [HIK].

Given an automaton state $\left(\ldots, b_{i}, b_{i+1}, \ldots\right) \in W$, there exists an integer m such that $b_{m^{\prime}}=1$ for all $m^{\prime}<m$ owing to the boundary condition (1). Fix any such m. Then the operator $K_{j}: W \rightarrow W$ maps $\left(\ldots, b_{i}, b_{i+1}, \ldots\right)$ to $\left(\ldots, c_{i}, c_{i+1}, \ldots\right)$, where $c_{m^{\prime}}=b_{m^{\prime}}$ for all $m^{\prime}<m$. The remaining c_{m}, c_{m+1}, \ldots are determined by the composition of L_{j} as

$$
\begin{equation*}
\stackrel{\substack{b_{m} \\ b_{m+1}}}{\substack{-c_{m} \\ \hline \\ c_{m+1}}} \tag{4}
\end{equation*}
$$

It is easy to see that the result is independent of the choice of m. The non-negative integers l on the horizontal line stand for the number of colour j particles on the carrier. The diagrams for L_{j} are viewed as the loading and unloading processes of the colour j particles when the carrier proceeds to the right. They match the algorithm stated before. Perhaps the above formulation of K_{j} using L_{j} is easier to program.

3. Examples

Let us present examples of the factorized dynamics. We suppress the trivial left tail in the time evolution and only depict the part that corresponds to the composition of (4) vertically.

Example 1. $\mathfrak{g}_{n}=D_{4}^{(1)} . T=K_{2} K_{3} K_{4} K_{-4} K_{-3} K_{-2}$.

$$
\begin{aligned}
& T:(-3,-2,1,-2,2,3,1,1,1, \ldots) \mapsto(1,-3,-2,1,1,3,-3,3,1, \ldots) \text {. }
\end{aligned}
$$

Example 2. $\mathfrak{g}_{n}=B_{3}^{(1)} . T=K_{2} K_{3} K_{0} K_{-3} K_{-2}$.

Example 3. $\mathfrak{g}_{n}=A_{4}^{(2)} . T=K_{2} K_{-1} K_{-2} K_{\emptyset}$.

$T:(-1,-2, \emptyset, 2, \emptyset,-2,1,1,1,1, \ldots) \mapsto(1,1, \emptyset, 1, \emptyset,-2,1,-1,-1,1, \ldots)$.
Along the steps $1-4$ in Section 2, the action of K_{\emptyset} in the above goes as follows.

As cautioned in remark 2, one must distinguish the moved \emptyset and those not yet moved. Here we have marked the moved ones with underlines.

4. Solitons

To save the space we shall write, for example, $2^{y_{2}}(-3)^{y_{-3}}$ to signify the configuration of the local states $\overbrace{2, \ldots, 2}^{y_{2}}, \overbrace{-3, \ldots,-3}^{y_{-3}}$ in a segment of an automaton state for non-negative integers y_{2} and y_{-3}, etc. In what follows we assume $y_{b} \in \mathbb{Z}_{\geqslant 0}$ for any $b \in B$. For each \mathfrak{g}_{n} consider the following configurations and define v from them:

$$
\begin{aligned}
& A_{n}^{(1)}:(n+1)^{y_{n+1}} \ldots 3^{y_{3}} 2^{y_{2}} \\
& v=\sum_{i=2}^{n+1} y_{i} \\
& A_{2 n-1}^{(2)}:(-2)^{y_{-2}}(-3)^{y_{-3}} \ldots(-n)^{y_{-n}} n^{y_{n}} \ldots 3^{y_{3}} 2^{y_{2}} \\
& v=\sum_{i=2}^{n}\left(y_{i}+y_{-i}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A_{2 n}^{(2)}:(\emptyset)^{y_{\emptyset}}(-1)^{y_{-1}}(-2)^{y_{-2}} \ldots(-n)^{y_{-n}} n^{y_{n}} \ldots 2^{y_{2}} 1^{y_{1}} \quad y_{\emptyset} \in\{0,1\} \quad y_{1}=y_{-1} \\
& v=y_{\emptyset}+\sum_{i=1}^{n}\left(y_{i}+y_{-i}\right) \\
& B_{n}^{(1)}:(-2)^{y_{-2}}(-3)^{y_{-3}} \ldots(-n)^{y_{-n}} 0^{y_{0}} n^{y_{n}} \ldots 3^{y_{3}} 2^{y_{2}} \quad y_{0} \in\{0,1\} \\
& v=y_{0}+\sum_{i=2}^{n}\left(y_{i}+y_{-i}\right) \\
& C_{n}^{(1)}:(-1)^{y_{-1}}(-2)^{y_{-2}} \ldots(-n)^{y_{-n}} n^{y_{n}} \ldots 2^{y_{2}} 1^{y_{1}} \quad y_{1}=y_{-1} \\
& \qquad v=\sum_{i=1}^{n}\left(y_{i}+y_{-i}\right) \\
& D_{n}^{(1)}:(-2)^{y_{-2}}(-3)^{y_{-3}} \ldots(-n)^{y_{-n}} n^{y_{n}} \ldots 3^{y_{3}} 2^{y_{2}} \\
& v=\sum_{i=2}^{n}\left(y_{i}+y_{-i}\right) \\
& D_{n+1}^{(2)}:(\emptyset)^{y_{\emptyset}}(-1)^{y_{-1}}(-2)^{y_{-2}} \ldots(-n)^{y_{-n}} 0^{y_{0}} n^{y_{n}} \ldots 2^{y_{2}} 1^{y_{1}} \quad y_{\emptyset}, y_{0} \in\{0,1\} \quad y_{1}=y_{-1} \\
& v=y_{\emptyset}+y_{0}+\sum_{i=1}^{n}\left(y_{i}+y_{-i}\right) .
\end{aligned}
$$

In an element of W, the above configuration is called a soliton with amplitude v if it is surrounded by sufficiently many $1 \in B$. (For an amplitude v soliton, 1^{v} in its right suffices.) The data $\left\{y_{b}\right\}$ are the internal labels of a soliton. Under the time evolution T (3), the amplitude v solitons propagate stably to the right with velocity v if they stay sufficiently away from configurations different from $1 \in B$ [HKT1]. It is a good exercise to check this claim by using the algorithm for T in section 2 . Moreover, the following facts have been proved concerning the collisions of solitons with distinct amplitudes [HKOTY]:
(1) The set of amplitudes remains invariant under the collisions.
(2) The two-soliton scattering rule is characterized by the combinatorial R of $U_{q}\left(\mathfrak{g}_{n-1}\right)$.
(3) Multi-soliton scattering factorizes into the two-soliton ones.

Leaving the precise statements to [HKOTY], we here include an example of the collision of two solitons.

Example 4. $\mathfrak{g}_{n}=C_{3}^{(1)}$. To make the space uniform, we denote $-j$ by \bar{j} for $j=1,2,3$. Then the evolution of a two-soliton state under $T^{t}(0 \leqslant t \leqslant 5)$ is depicted as follows:

$$
\begin{aligned}
& t=0: \cdots 11 \overline{1} \overline{2} \overline{2} 311111 \overline{2} \overline{3} 211111111111111111111111111 \cdots \\
& t=1: \cdots 1111111 \overline{1} \overline{2} \overline{2} 3111 \overline{2} \overline{3} 21111111111111111111111 \cdots \\
& t=2: \cdots 111111111111 \overline{1} \overline{2} 311 \overline{2} \overline{2} \overline{3} 21111111111111111 \cdots \\
& t=3: \cdots 1111111111111111 \overline{1} 3111 \overline{2} \overline{2} \overline{2} \overline{3} 2111111111111 \cdots \\
& t=4: \cdots 1111111111111111111 \overline{1} 311111 \overline{2} \overline{2} \overline{2} \overline{3} 211111111 \cdots \\
& t=5: \cdots 1111111111111111111111 \overline{1} 31111111 \overline{2} \overline{2} \overline{2} \overline{3} 211 \cdots
\end{aligned}
$$

One observes that the initial two solitons $\overline{1} \overline{2} \overline{2} 31$ and $\overline{2} \overline{3} 2$ are scattered into the final solitons $\overline{1} 31$ and $\overline{2} \overline{2} \overline{2} \overline{3} 2$ with a phase shift. In this way, the two-body scattering rule consists of the exchange of the internal labels of solitons and the phase shift.

Table 3.

\mathfrak{g}_{n}	i_{k+d}, \ldots, i_{k+1}
$A_{n}^{(1)}$	$2,3, \ldots, n, n+1$
$A_{2 n-1}^{(2)}, B_{n}^{(1)}$	$0,2,3, \ldots, n-1, n, n-1, \ldots, 3,2,0$
$A_{2 n}^{(2)}, C_{n}^{(1)}, D_{n+1}^{(2)}$	$1,2, \ldots, n-1, n, n-1, \ldots, 2,1,0$
$D_{n}^{(1)}$	$0,2,3, \ldots, n-2, n-1, n, n-2, n-3, \ldots, 3,2,0$

5. Relation to crystal theory

The factorized dynamics in this paper is a translation of a result in [HKT2]. By regarding the local states $-1, \ldots,-n$ here as $\overline{1}, \ldots, \bar{n}, B$ can be identified with the crystal B_{1} as a set. In equation (33) of [HKT2], take the integer k as $k=n-1$ for $D_{n}^{(1)}$ and $k=n$ for the other \mathfrak{g}_{n}. It leads to $a_{k}=1$ (cf tables I, II and equation (11) therein) for all the \mathfrak{g}_{n} in question, which implies the boundary condition $\ldots 111 \ldots$. The time evolution in this case is given by $T=\mathcal{T}_{k+d}$, where the data i_{k+d}, \ldots, i_{k+1} in equation (33) there read as given in table 3 .

Under the convention $\mathcal{T}_{k}=\mathrm{id}$, the operator K_{j} in this paper has emerged from the formula

$$
\begin{equation*}
K_{j_{r}}=\mathcal{T}_{k+r}\left(\mathcal{T}_{k+r-1}\right)^{-1} \quad 1 \leqslant r \leqslant d \tag{5}
\end{equation*}
$$

We have verified that the right-hand side yields the composition of $L_{j_{r}}$ described in section 2 by an explicit calculation. Similar factorized dynamics can be formulated corresponding to other boundary conditions than $1 \in B$ in (1) by choosing a different k in the above. However, such variations do not affect the qualitative feature of the automata.

Acknowledgments

The authors thank K Hikami, R Inoue, M Okado, T Tokihiro and Y Yamada for collaboration in their previous works.

References

[B] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic)
[FOY] Fukuda K, Okado M and Yamada Y 2000 Energy functions in box-ball systems Int. J. Mod. Phys. A 15 1379-92
[HHIKTT] Hatayama G, Hikami K, Inoue R, Kuniba A, Takagi T and Tokihiro T 2001 The $A_{M}^{(1)}$ automata related to crystals of symmetric tensors J. Math. Phys. 42 274-308
[HKOT1] Hatayama G, Kuniba A, Okado M and Takagi T 2000 Combinatorial R matrices for a family of crystals: $C_{n}^{(1)}$ and $A_{2 n-1}^{(2)}$ cases Physical Combinatorics (Progress in Mathematics vol 191) (Boston: Birkhäuser) pp 105-39
[HKOT2] Hatayama G, Kuniba A, Okado M and Takagi T 2000 Combinatorial R matrices for a family of crystals: $B_{n}^{(1)}, D_{n}^{(1)}, A_{2 n}^{(2)}$ and $D_{n+1}^{(2)}$ cases Preprint math.QA/0012247
[HKOTY] Hatayama G, Kuniba A, Okado M, Takagi T and Yamada Y 2000 Scattering rules in soliton cellular automata associated with crystal bases Preprint math.QA/0007175
[HKT1] Hatayama G, Kuniba A and Takagi T 2000 Soliton cellular automata associated with crystal bases Nucl. Phys. B 577[PM] 619-45
[HKT2] Hatayama G, Kuniba A and Takagi T 2001 Factorization of combinatorial R matrices and associated cellular automata J. Stat. Phys. 102 843-63
[HIK] Hikami K, Inoue R and Komori Y 1999 Crystallization of the Bogoyavlensky lattice J. Phys. Soc. Japan 68 2234-40
[K] Kashiwara M 1990 Crystalizing the q-analogue of universal enveloping algebras Commun. Math. Phys. 133 249-60
[KMN] Kang S-J, Kashiwara M, Misra K C, Miwa T, Nakashima T and Nakayashiki A 1992 Affine crystals and vertex models Int. J. Mod. Phys. A 7 (suppl 1A) 449-84
[NY] Nakayashiki A and Yamada Y 1997 Kostka polynomials and energy functions in solvable lattice models Sel. Math. New Ser. 3 547-99
[T] Takahashi D 1993 On some soliton systems defined by using boxes and balls Proc. Int. Symp. on Nonlinear Theory and Its Applications (NOLTA '93) pp 555-8
[TS] Takahashi D and Satsuma J 1990 A soliton cellular automaton J. Phys. Soc. Japan 59 3514-9
[TNS] Tokihiro T, Nagai A and Satsuma J 1999 Proof of solitonical nature of box and ball systems by means of inverse ultra-discretization Inverse Problems 15 1639-62
[TTM] Tokihiro T, Takahashi D and Matsukidaira J 2000 Box and ball system as a realization of ultradiscrete nonautonomous KP equation J. Phys. A: Math. Gen. 33 607-19
[TTMS] Tokihiro T, Takahashi D, Matsukidaira J and Satsuma J 1996 From soliton equations to integrable cellular automata through a limiting procedure Phys. Rev. Lett. 76 3247-50

